A team of engineering researchers at the Georgia Institute of Technology hopes to uncover new ways to diagnose and treat brain ailments, from tumors and stroke to Parkinson’s disease, leveraging vibrations and ultrasound waves.
The five-year, $2 million National Science Foundation (NSF) project initiated in 2019 already has resulted in several published journal articles that offer promising new methods to focus ultrasound waves through the skull, which could lead to broader use of ultrasound imaging — considered safer and less expensive than magnetic resonance imaging (MRI) technology.
Specifically, the team is researching a broad range of frequencies, spanning low frequency vibrations (audio frequency range) and moderate frequency guided waves (100 kHz to 1 MHz) to high frequencies employed in brain imaging and therapy (in the MHz range).
“We’re coming up with a unique framework that incorporates different research perspectives to address how you use sound and vibration to treat and diagnose brain diseases,” explained Costas Arvanitis, an assistant professor in Georgia Tech’s George W. Woodruff School of Mechanical Engineering and the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. “Each researcher is bringing their own expertise to explore how vibrations and waves across a range of frequencies could either extract information from the brain or focus energy on the brain.”
Accessing the Brain Is a Tough Challenge
While it is possible to treat some tumors and other brain diseases non-invasively if they are near the center of the brain, many other conditions are harder to access, the researchers say.
“The center part of the brain is most accessible; however, even if you are able to target the part of the brain away from the center, you still have to go through the skull,” Arvanitis said.
He added that moving just 1 millimeter in the brain constitutes “a huge distance” from a diagnostic perspective. The science community widely acknowledges the brain’s complexity, each part associated with a different function and brain cells differing from one to the other.
According to Brooks Lindsey, a biomedical engineering assistant professor at Georgia Tech and Emory, there is a reason why brain imaging or therapy works well in some people but not in others.
“It depends on the individual patient’s skull characteristics,” he said, noting that some people have slightly more trabecular bone — the spongy, porous part of the bone that makes it more difficult to treat.
Using ultrasound waves, the researchers are tackling the challenge on multiple levels. Lindsey’s lab uses ultrasound imaging to assess skull properties for effective imaging and therapy. He said his team conducted the first investigation that uses ultrasound imaging to measure the effects of bone microstructure — specifically, the degree of porosity in the inner, trabecular bone layer of the skull.
“By understanding transmission of acoustic waves through microstructure in an individual’s skull, non-invasive ultrasound imaging of the brain and delivery of therapy could be possible in a greater number of people,” he said, explaining one potential application would be to image blood flow in the brain following a stroke.