When looking over the data, “we found that the replay was basically missing, and the inhibitory synapses were weakened,” Singer said. “Synaptic dysfunction and replay dysfunction are conceptually different, but related because they co-occur. That suggests a synaptic cause that underlies deficits in network activity for memory, such as replay. So this work makes a connection between synaptic and neural activity deficits in Alzheimer’s for the first time.”
Their discoveries could lead to new screening or diagnostic tools for Alzheimer’s, perhaps based on technology Singer’s lab has been working on for the past few years. The technology uses flickering lights and pulses of sound (delivered through a visor and headphones) to stimulate gamma waves, cutting down on amyloid beta proteins, which are an early hallmark of Alzheimer’s. Gamma waves are associated with high-level cognitive functions, like perception and memory.
Singer expects to soon publish the findings of the first human feasibility study using her flicker treatment. She reported promising results from the trial last fall at the American Neurological Association annual meeting. Now her lab is studying how to use the non-invasive technology to address synaptic issues.
“We’re working right now on developing therapeutic options to rescue these dysfunctions in synapses and replay,” she said. “We’re seeing some intriguing results, but we’ve got more work to do.”
This work was supported by the National Institutes of Health (NIH), grant No. R01-NS109226, the Lane Family, and the Wright Family. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of any funding agency.