When babies are born with severe heart defects like pulmonary artery atresia or hypoplastic left heart syndrome, the prognosis is difficult. There is no cure, no reliable therapy for many of these defects. Just uncertainty. And drastic efforts to fix the parts of the heart that didn’t develop properly.
Ultimately, these tiny babies may face multiple significant surgeries in their early weeks of life.
That’s what Vahid Serpooshan thinks about when he’s in his lab using a sophisticated 3D bioprinter to create models of the earliest stages of heart development: the babies and their families and how his team can help by unravelling some of the mysteries of the developing human heart.
“These are babies who are a few days old and who are suffering from very severe, acute heart disease and heart defects. And many of them do not survive — even after multiple surgeries,” Serpooshan said. “Being able to simulate such severe situations in bioprinted and bioengineered platforms where there's no real limit to their manufacturing for study and analysis — that has a really high value for us in terms of how we're able to help patients and save patients’ lives.”
Understanding normal heart development — and thus, what can go wrong and lead to severe defects — is the cornerstone of the Faculty Early Career Development award Serpooshan received this spring from the National Science Foundation. Known as CAREER awards, these five-year grants are NSF’s most-prestigious award for early career faculty. They identify potential leaders and academic role models, giving them funds to build the foundation for a lifetime of study.
Serpooshan’s foundation will be the first 3D-printed model of heart tissue using soft, flexible hydrogel materials that are infused with cells from specific patients. He’s working to develop models that mimic the exact structure of the heart at two stages: the embryonic heart tube present at roughly 20 days after conception and a more fully developed fetal heart at 30-34 weeks.
Serpooshan and his team will connect the models to a bioreactor that creates a flow of stand-in material similar to blood, creating a dynamic system that functions just like the real thing.