The seemingly simple act of reaching for a cup isn’t really simple at all. In truth, our brains issue hundreds, maybe thousands of instructions to make that happen: positioning your body just right, maybe leaning forward a bit, actually lifting your arm and reaching out, grasping the cup with your fingers, and a whole host of tiny movements and adjustments along the way.
Scientists can record all of the neural activity related to the movement, but it’s complicated and messy. “Seemingly random and noisy,” is the way Chethan Pandarinath describes it. So how do you pick out the signal from the noise, to identify the activity that controls all those movements and says to the body, “pick up the cup”?
Pandarinath thinks he has a way, using new artificial intelligence tools and our growing understanding of neuroscience at a system-wide level. It’s an approach he’s been building toward for years, and he’s after a goal that could be nothing short of revolutionary: creating brain-machine interfaces that can decode in just milliseconds, and with unprecedented accuracy, what the brain is telling the body to do. The hope is to reconnect the brain and the body for patients who are paralyzed from strokes, spinal cord injuries, or ALS — amyotrophic lateral sclerosis, or Lou Gehrig’s disease.
The National Institutes of Health has recognized the exceptional creativity of Pandarinath’s approach — and its transformative potential — with a 2021 Director’s New Innovator Award, the agency’s most prestigious program for early career researchers.
“What NIH is looking for in this mechanism is ideas that they think are transformative — it's a little bit hard to predict how it will go, but the idea has the potential to really change an entire field,” said Pandarinath, assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Emory University and Georgia Tech. “It’s wonderful recognition that they think my proposal is significant enough,”
Part of the NIH’s High-Risk, High-Reward Research program, Pandarinath’s $2.4 million grant will support his team’s launch of a clinical trial this fall, implanting sensors into the brains of ALS patients. He’ll work closely with Emory neurosurgeons Nicholas Au Yong and Robert Gross and neurologist Jonathan Glass, who’s also director of the Emory ALS Center.
“To move this toward a clinical trial, that really is a collaboration between BME and Neurosurgery and Neurology. That's pretty exciting. That's the only way we can make clinical impact,” said Pandarinath, who also is a faculty member in the Emory Neuromodulation Technology Innovation Center, or ENTICe.
“It is exciting to see this project coming together as a result of the ingenuity and efforts of this extraordinarily talented team of engineers and clinician-scientists,” said Gross, the MBNA Bowman Chair in Neurosurgery and founder and director of ENTICe. “It moves us closer toward our goal, in partnership with Georgia Tech, to improve the lives of patients disabled by ALS and other severe neurological disorders with groundbreaking innovations and discovery.”