Skip to main content
x
Microchip Can Electronically Detect Covid Antibodies in Just a Drop of Blood

The approach is simple, cheap, and even can quantify antibody levels in the body

Posted September 21, 2022

 

Postdoctoral fellow Neda Rafat and Assistant Professor Aniruddh Sarkar with the Bluetooth reader and smartphone app their team developed to display test results from a new electronic Covid-19 test chip. (Photo: Candler Hobbs)

 

 

A single drop of blood from a finger prick. A simple electronic chip. And a smartphone readout of test results that could diagnose a Covid-19 infections or others like HIV or Lyme disease.

It sounds a bit like science fiction, like the beginnings of the medical tricorder used by doctors on Star Trek. Yet researchers at Georgia Tech and Emory University have taken the first step to showing it can be done, and they’ve published their results in the journal Small.

Postdoctoral fellow Neda Rafat and Assistant Professor Aniruddh Sarkar created a small chip that harnesses the fundamental chemistry of the gold-standard lab method but uses electrical conductivity instead of optics to detect antibodies and indicate infection.

“At the heart of many diagnostics, something binds to something, and a signal is produced. That's where the optics interact and generate a light signal,” said Sarkar, a faculty member in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory. “What Neda has done is figured out a way of making that binding event happen between a patient sample and something from the sensor itself, so that signal will be directly electronic.”

The “something” Rafat is using is silver, an electrically conductive metal. Her approach creates small silver deposits in tiny wells of the microchip, completing an electrical circuit that can be measured with a simple multimeter.

The technique is a new approach to diagnostics like the rapid antigen tests that have become so familiar during the Covid pandemic, but the team’s tests do much more. Rafat, Sarkar, and their team of researchers created multiplex chips, which means they can detect multiple different kinds of antibodies. That allows one chip to potentially screen for multiple infections from just a single drop of blood. The team also can quantify the level of antibodies in the blood based on how much silver ends up on the chip.
 

Read the full story on the College of Engineering website.

 

Contact

Joshua Stewart
Communications
Georgia Tech College of Engineering

Faculty

 

 

Latest BME News

New research from Georgia Tech helps doctors predict how therapies will interact with a child's immune system, potentially improving outcomes and reducing risks.

Georgia Tech researchers reveal the dynamic role of inhibitory neurons in spatial memory and learning

The department remains a top-ranked biomedical engineering program for graduate education in the nation.

Neuroscientist and former BME grad student Nuri Jeong is helping to reshape lives and careers

Georgia Tech authors reflect a rapidly evolving field in new edition highlighting real-world applications

 

Hands-on approach to teaching microfluidics is inspiring future innovators

In this edition of Ferst Exchange, Coulter BME's Aniruddh Sarkar explains the science.

Georgia Tech researchers uncover the role of lateral inhibition in enhancing contrast and filtering distractions, with implications for neuroscience and AI.