Using tiny snippets of DNA as “barcodes,” researchers have developed a new technique for rapidly screening nanoparticles for their ability to selectively deliver therapeutic genes to specific organs of the body. The technique could accelerate the use of gene therapies for such killers as heart disease, cancer, and Parkinson’s disease.
Genetic therapies, such as those made from DNA or RNA, are difficult to deliver into the right cells in the body. For the past 20 years, scientists have been developing nanoparticles made from a broad range of materials and adding compounds such as cholesterol to help carry these therapeutic agents into cells. But the nanoparticle carriers must undergo time-consuming testing — first in cell culture, then in animals. With millions of possible formulas, identifying the optimal nanoparticle to target each organ has been challenging.
Using DNA strands just 58 nucleotides long, researchers from Georgia Tech, the University of Florida, and the Massachusetts Institute of Technology (MIT) have developed a new evaluation technique that skips the cell culture testing altogether — and could allow hundreds of different types of nanoparticles to be tested simultaneously in just a handful of animals.
Media Contact
Keywords
Latest BME News
Georgia Tech authors reflect a rapidly evolving field in new edition highlighting real-world applications
Hands-on approach to teaching microfluidics is inspiring future innovators
In this edition of Ferst Exchange, Coulter BME's Aniruddh Sarkar explains the science.
Georgia Tech researchers uncover the role of lateral inhibition in enhancing contrast and filtering distractions, with implications for neuroscience and AI.
Graduate BME students are tackling heart disease and training to become leaders and innovators in cardiovascular research
BME undergrad is first student from Coulter department and one of three from Georgia Tech to earn aerospace honor
Coulter BME researchers develop 3D-printed, bioresorbable heart valve, potentially eliminating the need for repeated surgeries.