Skip to main content
x
Flowing Toward a Potential Atherosclerosis Therapeutic
Posted February 16, 2022

 

 

It’s not a blockbuster cardiovascular drug — yet. But the pathway from bench to bedside is easy to see.

In a recent eLife paper, Hanjoong Jo’s lab characterizes a “flow-kine”: a protein produced by endothelial cells in response to healthy blood flow patterns. Unlike other atherosclerosis-linked factors previously identified by Jo’s team, this one — called KLK10 — is secreted. That means that the KLK10 protein could morph into a therapeutic. 

 

Wallace H. Coulter Distinguished Chair Hanjoong Jo and his team have discovered a potential new therapeutic target for atherosclerosis, a protein called KLK10.

 

KLK10 can be compared to PCSK9 inhibitors, which lower LDL cholesterol and have a proven ability to prevent cardiovascular events. KLK10 acts in a different way, not affecting cholesterol, but instead inhibiting inflammation in endothelial cells. KLK10 can protect against atherosclerosis in animal models, when delivered by injection.

“The most important clinical implication is that we were able to see that human atherosclerotic plaques have a low level of KLK10,” said Jo, professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. “In a healthy heart, the expression level is OK.”

Jo sees similarities between KLK10 and myokines, exercise-induced proteins secreted by skeletal muscle cells. Looking ahead, his lab has begun experiments testing how exercise affects KLK10 and other protective factors.

Using a workhorse model of disturbed blood flow in atherosclerosis, Jo’s team has steadily identified a stream of genes involved in the disease process. KLK10 is one of several down-regulated by disturbed blood flow.

Jo cites the transcription factor KLF2 as another good example of a protective protein identified by his team’s approach. KLF2 has a similar protective function, but it is expressed inside endothelial cells and stays inside the cell. KLK10 is secreted into the circulation, giving it more obvious therapeutic potential.

Exactly how KLK10 works in the context of cardiovascular health is still unclear. Since it is a serine protease — an enzyme that snips other proteins — we might assume that its job is to cut something. But preliminary experiments suggest that KLK10 is instead binding another protein to regulate inflammation. Jo is eager to publish more on that story next.

 

Pioneering molecular biologist Alfred Hershey once described scientific happiness (or Hershey heaven) as the ability to have “one experiment that works, and keep doing it all the time.” But it would be unfair to classify the Jo lab’s atherosclerosis model this way — they keep refining it, using single-cell techniques to dissect out which types of cells make the proteins in question.

Future commercialization for KLK10? Jo has formed a company, FloKines Pharma, and this research is what FloKines was meant to embrace, he said.

 

Contact

Joshua Stewart
Communications
Wallace H. Coulter Department of Biomedical Engineering

Faculty

 

 

Latest BME News

Researchers demonstrate stem cell treatment without chemotherapy and painful bone marrow procedure

BME researchers explore the critical role of mechanical force in rare genetic disorder

Researchers develop spatial transcriptomics toolkit that provides new insights into the molecular processes of life

Air Detectives take top prize to give department three straight victories in Expo competition  

Coulter BME community gathers at the Fabulous Fox to celebrate anniversary of unique public-private partnership

Coskun pioneering new research area and building a company around iseqPLA technology 

BME undergraduate student and competitive skater Sierra Venetta has found success on and off the ice

BME researcher Ankur Singh using new technology to uncover weakened response in cancer patients