BMED 3600 Physiology of Cellular and Molecular Systems (Required)

Catalog Description:	 BMED 3600 Physio Cell & Mol Syst (3-0-3) Prerequisite(s): BMED 3100 In depth cell and molecular physiology focused on cellular responses to stimuli, including cell organization/ reorganization, membrane transport/kinetics, cell signaling/ molecular biology, mechanobiology and energy requirements.
Textbook:	Molecular Biology of the Cell, 5 th edition, Alberts et al, Garland Science, Taylor & Francis Group, LLC (2008)

Prepared by: Shannon Barker

Topics Covered:

- 1. The central dogma of biology
 - a. Cells and molecules
 - b. Transcription
 - c. Translation
 - d. Proteins
- 2. Cell receptor-ligand interactions and cell signaling
- 3. Membranes, cellular compartmentalization, and transport
- 4. Adhesion, cytoskeleton, and migration
- 5. The cell life cycle
 - a. Proliferation
 - b. Apoptosis
- 6. The extracellular matrix
- 7. Molecular biology techniques
 - a. Manipulation of cells, proteins, and DNA/RNA
- 8. Design a rationale approach to a biomedical problem in cell biology
 - a. Using literature to generate a logical hypothesis
 - b. Design appropriate experimental approach toward logical hypothesis

Course outcomes:

Students who complete this course will:

- 1. Understand the structure and functional organization of cell organelles, especially membrane, cytoskeleton, extracellular matrix and nucleus (Student Outcome a)
- 2. Understand the quantitative aspects of membrane transport and cell signaling pathways (Student Outcome a)
- 3. Understand mechanisms regulating cell growth, division & death (Student Outcome a)
- 4. Understand basic regulatory mechanisms of gene expression and protein synthesis and apply them to problems in biomedical engineering (Student Outcome a)
- 5. Understand homeostasis and how it is achieved in cell systems and be able to apply this information to product design problems (Student Outcome a)
- 6. Understand how cells interact with their substrate and apply this knowledge to the design of cell-scaffold constructs for tissue engineering (Student Outcomes a)

- 7. Know basic constituents of the extracellular matrix produced by cells and how they contribute to the mechanical properties of cells and tissues (Student Outcome a)
- 8. Read and understand the scientific literature (Student Outcomes i and j)
- 9. Apply course outcomes 1-8 to the study of applications in biomedical engineering (Student Outcome j)
- 10. Design rational hypotheses and experimental approaches toward a biomedical problem (Student Outcome b)
- 11. Generate written and oral communications explaining the ratioale of experimental approaches (Student Outcome g)

BMED 3600													
	Biomedical Engineering Student Outcomes												
Course outcomes	а	b	c	d	e	f	g	h	i	j	k		
1	Х												
2	Х												
3	Х												
4	Х												
5	Х												
6	Х												
7	Х												
8									Х	Х			
9										Х			
10		X											
11							X						

Correlation between course outcomes and student outcomes:

The Wallace H. Coulter Department of Biomedical Engineering Student Outcomes:

- a. an ability to apply knowledge of mathematics, science, and engineering;
- b. an ability to design and conduct experiments, as well as to analyze and interpret data;
- c. an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, societal, political, ethical, health and safety, manufacturability, and sustainability;
- d. an ability to function on multidisciplinary teams;
- e. an ability to identify, formulate, and solve engineering problems;
- f. an understanding of professional and ethical responsibility;
- g. an ability to communicate effectively;
- h. the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context;
- i. a recognition of the need for, and an ability to engage in life-long learning;
- j. a knowledge of contemporary issues;
- k. an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice;