The biomedical engineering master’s program (MS BMED) is completed in three (non-thesis) to six (thesis) sequential semesters. Candidates typically take two to four courses each semester.

- Thesis option is oriented towards those contemplating pursuing a Ph.D. in the future. Course credits may transfer to the Ph.D. program (application required).
- Non-thesis option is oriented towards those seeking deeper content knowledge. Course credits may transfer to the Ph.D. program (application required).

Course of Study

<table>
<thead>
<tr>
<th>Thesis Option</th>
<th>Non-thesis Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2 hours coursework)</td>
<td>(3 hours coursework)</td>
</tr>
<tr>
<td>Courses</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>Biology</td>
<td>3</td>
</tr>
<tr>
<td>Engineering</td>
<td>3</td>
</tr>
<tr>
<td>Data science</td>
<td>3</td>
</tr>
<tr>
<td>Approved electives</td>
<td>B</td>
</tr>
<tr>
<td>Coursework total</td>
<td>8</td>
</tr>
</tbody>
</table>

Candidates for this master’s program include:

- Graduates who have earned a bachelor’s in engineering, science, or math
- Working career professionals with an engineering and/or science background

Our program aims:

- To prepare students for successful careers, whatever their next step.
- To educate students in methods of advanced analysis and appropriate problem solving;
- To provide a depth of knowledge in professionally relevant biomedical engineering fields;
- To provide a breadth of knowledge that fosters interdisciplinary approaches to problem solving;
- To develop the skills pertinent to the research processes, including working collaboratively and communicating effectively;
- To prepare for transition to a Ph.D. program if choosing a thesis option.

BIOMEDICAL ENGINEERING

The Wallace H. Coulter Department of Biomedical Engineering is ranked among the best biomedical engineering programs in the nation. Our students are doing cutting-edge research in highly collaborative environments, which is a common theme in the nation. Our students are doing cutting-edge research.

Our program aims:

- To prepare students for successful careers, whatever their next step.
- To educate students in methods of advanced analysis and appropriate problem solving;
- To provide a depth of knowledge in professionally relevant biomedical engineering fields;
- To provide a breadth of knowledge that fosters interdisciplinary approaches to problem solving;
- To develop the skills pertinent to the research processes, including working collaboratively and communicating effectively;
- To prepare for transition to a Ph.D. program if choosing a thesis option.

Our program aims:

- To prepare students for successful careers, whatever their next step.
- To educate students in methods of advanced analysis and appropriate problem solving;
- To provide a depth of knowledge in professionally relevant biomedical engineering fields;
- To provide a breadth of knowledge that fosters interdisciplinary approaches to problem solving;
- To develop the skills pertinent to the research processes, including working collaboratively and communicating effectively;
- To prepare for transition to a Ph.D. program if choosing a thesis option.

Our program aims:

- To prepare students for successful careers, whatever their next step.
- To educate students in methods of advanced analysis and appropriate problem solving;
- To provide a depth of knowledge in professionally relevant biomedical engineering fields;
- To provide a breadth of knowledge that fosters interdisciplinary approaches to problem solving;
- To develop the skills pertinent to the research processes, including working collaboratively and communicating effectively;
- To prepare for transition to a Ph.D. program if choosing a thesis option.

Coulter Department Research Areas

Clinical and Molecular Engineering

Cancer Technologies

Neuroengineering

Immunoengineering

Biomedical Information and Systems Modeling

Micro and Nano Technologies

Neuroengineering

Interactive engineering

Cardiovascular Engineering

Computational Engineering

Engineering Education

Courses

Biology	3
Engineering	3
Data science	3
Approved electives	B
Coursework total	8

Coulter Department Research Areas

Clinical and Molecular Engineering

Cancer Technologies

Neuroengineering

Immunoengineering

Biomedical Information and Systems Modeling

Micro and Nano Technologies

Neuroengineering

Interactive engineering

Cardiovascular Engineering

Computational Engineering

Engineering Education

Courses

Biology	3
Engineering	3
Data science	3
Approved electives	B
Coursework total	8

Coulter Department Research Areas

Clinical and Molecular Engineering

Cancer Technologies

Neuroengineering

Immunoengineering

Biomedical Information and Systems Modeling

Micro and Nano Technologies

Neuroengineering

Interactive engineering

Cardiovascular Engineering

Computational Engineering

Engineering Education

Courses

Biology	3
Engineering	3
Data science	3
Approved electives	B
Coursework total	8

Coulter Department Research Areas

Clinical and Molecular Engineering

Cancer Technologies

Neuroengineering

Immunoengineering

Biomedical Information and Systems Modeling

Micro and Nano Technologies

Neuroengineering

Interactive engineering

Cardiovascular Engineering

Computational Engineering

Engineering Education

Courses

Biology	3
Engineering	3
Data science	3
Approved electives	B
Coursework total	8

Coulter Department Research Areas

Clinical and Molecular Engineering

Cancer Technologies

Neuroengineering

Immunoengineering

Biomedical Information and Systems Modeling

Micro and Nano Technologies

Neuroengineering

Interactive engineering

Cardiovascular Engineering

Computational Engineering

Engineering Education

Courses

Biology	3
Engineering	3
Data science	3
Approved electives	B
Coursework total	8

Coulter Department Research Areas

Clinical and Molecular Engineering

Cancer Technologies

Neuroengineering

Immunoengineering

Biomedical Information and Systems Modeling

Micro and Nano Technologies

Neuroengineering

Interactive engineering

Cardiovascular Engineering

Computational Engineering

Engineering Education

Courses

Biology	3
Engineering	3
Data science	3
Approved electives	B
Coursework total	8
Located in one of America’s most vibrant cities, Georgia Tech’s College of Engineering combines the resources of a major university with the benefits of an urban campus, giving students the tools they need to chase their ambitions. With dozens of degree programs across eight schools, the College has built a strong reputation in the United States and abroad, and graduates leave with skills, knowledge, and global savvy for a world increasingly dependent on engineering.

Georgia Tech’s engineering graduate programs are consistently ranked in the top ten in the nation in their respective specialties according to U.S. News & World Report graduate rankings of national universities granting doctorate degrees.

ATLANTA: A Thriving Metropolis

Atlanta is an integral and exciting aspect of the Georgia Tech and Emory educational experience. Atlanta is one of the Southeast’s most vibrant, progressive, and dynamic cities. When students are not studying, they explore Atlanta’s rich and diverse culture through museums, music venues, professional sports teams, shopping districts, and the best cuisine in the south. Atlanta’s warm climate allows for year-round outdoor activities. Mountains, lakes, campgrounds, and hiking trails are all within an hour’s drive – and access to Hartsfield-Jackson Atlanta International Airport makes the whole world just a flight away.

Located in one of America’s most vibrant cities, the Georgia Aquarium is the world’s largest indoor aquarium.

Creating the Next...

Located in Atlanta, the Georgia Aquarium is the world’s largest indoor aquarium.