BME GRADUATE MILESTONES EVALUATION FORM

DATE: ______________ **STUDENT:** ____________________________ **PROGRAM** (circle one): BME PKU

MATRICULATION TERM/YEAR: ______________ **FACULTY MEMBER:** ____________________________

TRACK (circle one):
- Biomechs/Mechanobio
- Comp Biomed Sys Analy
- Biomed Imag/Opt
- Cell/Mol/Biomat Eng
- Healthcare Info/Tech

MILESTONE (circle one):
- Qualifying Exam
- Thesis Proposal
- Thesis Defense
- Other: ______________

RANKING: 5=Exceptional; 4=Very Good; 3=Proficient; 2=Needs Improvement; 1=Remedial

CRITERION

EXCEPTIONAL
- Consistently provides detailed answers on bio-mechanism without prompting
- Able to explain the biological aspects of the problem with deep insight
- Able to explain the biological system at the functional/structural/factual level

PROFICIENT
- Provides details but with some prompting
- Demonstrates insight, but needs prompting to demonstrate deep insight
- Able to explain the biological system at the structural/factual level

REMEDIAL
- Fails to articulate simple concepts in cell/tissue or physiology
- Unable to explain how bio events inform design
- Unable to explain a biological system at its functional level
- Knows biological facts but can’t apply at engineering/quantitative level

<table>
<thead>
<tr>
<th>Criterion 1</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
</table>
| 1. Applies a breadth & depth of advanced biological knowledge at the graduate level towards solving bioengineering problems | Consistently provides detailed answers on bio-mechanism without prompting
- Able to explain the biological aspects of the problem with deep insight
- Able to explain the biological system at the functional/structural/factual level | Provides details but with some prompting
- Demonstrates insight, but needs prompting to demonstrate deep insight
- Able to explain the biological system at the structural/factual level | Fails to articulate simple concepts in cell/tissue or physiology
- Unable to explain how bio events inform design
- Unable to explain a biological system at its functional level
- Knows biological facts but can’t apply at engineering/quantitative level |

<table>
<thead>
<tr>
<th>Criterion 2</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
</table>
| 2. Applies a breadth & depth of advanced engineering skills and knowledge towards solving bioengineering problems | Consistently provides details of approach to problem without prompting
- Able to explain engineering principles as relevant to the biological problem
- Demonstrated the ability to gain insight into a biological problem using engineering principles | Offers an approach but with some prompting
- Offers some general detail of engineering knowledge
- Able to identify engineering principles but not necessarily to solve a biological problem | Unable to see relationship between engineering and biological formulations of a problem
- Unable to solve basic engineering problems
- Knows techniques but not how to use them |

<table>
<thead>
<tr>
<th>Criterion 3</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
</table>
| 3. Integrates advanced biological and engineering concepts in solving complex biomedical problems | Consistently demonstrates awareness of how biology drives answers and checks that answers accurately reflect biological problem
- Able to develop and explain an experimental design
- Able to use new material to solve a problem on his/her feet | Able to explain biological phenomena in engineering terminology
- Offers a design but unable to clearly explain it, some information irrelevant
- Slow to incorporate new material into the problem | Unable to deal with or incorporate new information
- Unable to demonstrate an understanding of the connections between an engineering and biological formulation of a problem |
<table>
<thead>
<tr>
<th>CRITERION</th>
<th>EXCEPTIONAL</th>
<th>PROFICIENT</th>
<th>REMEDIAL</th>
</tr>
</thead>
</table>
| 4. Demonstrates an ability to read, analyze, and synthesize literature* | • Routinely recognizes whether experimental approaches are rationally designed toward addressing hypotheses
• Easily identifies errors & limitations
• Able to interpret results objectively, consistently differentiates objective interpretation from conjecture & speculation
• Regularly places body of work in larger contexts, typically integrates knowledge from multiple sources toward student’s own approach & the field at large | • Often analyzes research critically
• Mostly able to recognize errors & limitations
• Needs some assistance in making objective interpretations of data; occasionally recognizes conjecture and speculation
• Shows some ability to place work in a larger context; occasionally able to integrate knowledge from other sources toward own work or field at large | • Demonstrates general trust in all published literature
• Cannot detect a study's limitations and errors
• Unable to place body of work into the big picture; difficulty integrating knowledge from multiple sources toward his/her own work or the field at large |
| 5. Utilizes a logical approach in the design, implementation, and evaluation of a research strategy to solve a complex biomedical problem | • Able to clearly articulate rationale in defense of a claim without prompting | • Gives a partial chain of logic
• Needs prompting to translate technical terminology into easily understandable terms
• Demonstrates understanding of rationale but needs prompting to apply it to the problem | • Unfocused responses
• Makes vague statements with no clear tie to question
• Unable to defend statements |
| 6. Effectively and efficiently communicates ideas in an organized manner to both engineers and scientists, as well as expert and novice audiences | • Develops a chain of logic that is transparent & easy to follow
• Offers only relevant, targeted information
• Engages committee in the clarification process
• Able to restate question in own words
• Easily uses technical terminology and concepts to make points
• Able to explain technical information in lay terminology | • Offers a chain of logic but it is not particularly transparent or easy to follow
• Offers mostly targeted, relevant information
• Is aware of technical terminology but has difficulty connecting it to explanations | • Rambles and sidesteps the question
• Unable to make list of clear goals and questions
• Responds to different question than asked |

<table>
<thead>
<tr>
<th>Criterion 4</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criterion 5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Criterion 6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Comments *(please back of sheet if more space is needed)*

Overall Score | 5 | 4 | 3 | 2 | 1 |

* This criterion should NOT be included when scoring a student during his/her qualifying exam.